Pushing boundaries in innovation and technology

Conference presentation
WHY IS INNOVATION AND TECHNOLOGY LEADERSHIP MORE IMPORTANT THAN EVER?
Inventor and leader in high-tech material solutions

Covestro at a glance

- **€12.4bn**
  - Sales
  - 2019

- **#1**
  - Global producer of PU and its derivatives as well as PC\(^{(a)}\)

- **4%**
  - Core volume growth CAGR 2015-2019

- **17,200**
  - Employees
  - (in FTE) 2019

- **€266m**
  - R&D expenses
  - 2019

Notes:
- (a) Based on total combined nameplate capacity for MDI, TDI and polyether polyols at year end 2019 as per Covestro estimates.

### Key Figures
- **17,200** Employees (in FTE) 2019
- **€266m** R&D expenses 2019
- **4%** Core volume growth CAGR 2015-2019
- **€12.4bn** Sales 2019

### Market Segments
- Polycarbonates, PCS: 28%
- Polyurethanes, PUR: 47%
- Coatings, Adhesives, Specialties, CAS: 19%
- Other: 6%

### Geographic Regions
- APAC: 32%
- NAFTA: 25%
- EMLA: 43%

### Other Industries
- Sports / Leisure, Cosmetics, Health, diverse industries: 19%
- Automotive / Transportation: 16%
- Chemicals: 16%
- Electrical / Electronics: 13%
- Construction: 19%
- Wood / Furniture: 7%
Number one producer globally and inventor of PU\(^{(a)}\)

Polyurethanes (PUR) at a glance

**Products**

Polyurethane rigid foam is an excellent insulation material and adds to high energy efficiency in cooling units and buildings.

As soft foam polyurethane provides comfort, for example in mattresses, car seats and upholstery.

Covestro develops and produces the components of this versatile material.

**Key customer industries:**

- For comfortable cars
- For sustainable houses
- For cozy furniture
- For robust sports equipment

Notes:

(a) Based on total combined nameplate capacity for MDI, TDI and polyether polyols at year end 2019 as per Covestro estimates

(b) Adjusted 2017 figures to reflect the transfer of the specialty elastomers business from the Polyurethanes segment to the CAS segment as of January 1, 2018
Number one producer globally and inventor of PC\(^{(a)}\)

Polycarbonates (PCS) at a glance

### Products

As a true high-tech material, polycarbonate is not only very robust, break-proof and light-weight, but also offers a high degree of design flexibility.

Polycarbonate is available in all colors ranging from crystal clear to deep black. It is an excellent substitute for traditional material such as glass or metal.

This allows for a wide variety of application possibilities ranging from vehicles to smartphones and laptops as well as lenses or large roofs.

### Key customer industries:

- Cars
- Homes
- Laptops
- Hospitals

### Sample applications

- For trendy smartphones
- For bright buildings
- For light-weight cars
- For safe medical products

---

### Notes:

\( (a) \) Based on nameplate capacity at year end 2019 as per Covestro estimates

---

### Core volume CAGR in 2015 - 2019\(^{(b)}\)

| €3.5bn | Sales 2019 |
| €536m | EBITDA 2019 |

---

2020 | Innovation and Technology @ Covestro | Notes: (a) Based on nameplate capacity at year end 2019 as per Covestro estimates
Performance materials for coatings, adhesives and specialties

Coatings, Adhesives, Specialties (CAS) at a glance

**Products**

There is a vast application range of coatings and finishes made of Covestro polyurethane raw materials. They are used for protection and decoration.

In addition, the company produces pre-products for adhesives and sealants as well as for specialty films and elastomers.

Coating, Adhesives, Specialties (CAS) also supplies materials for cosmetics, textiles and medical goods.

**Key customer industries:**

- For robust floors
- For functional textiles
- For fancy cars
- For long-lasting cosmetics

**Sample applications**

**2.1%**
Core volume CAGR in 2015 - 2019

**€2.4bn**
Sales 2019

**€469m**
EBITDA 2019

Notes:
(a) Based on nameplate capacity at year end 2019 as per Covestro estimates
(b) All figures adjusted to reflect the transfer of the specialty elastomers business from the Polyurethanes segment to Coatings, Adhesives, Specialties segment as of January 1, 2018 as well as the termination of trading activities and reduced contract manufacturing
Securing profitable growth in more challenging times

Covestro key investment highlights

1. Above GDP volume growth
   driven by innovation and sustainability trends

2. Leading and defendable global industry positions
   as innovation and cost leader

3. Management focus on driving efficiency
   with streamlined structures to better adapt to market needs, focus on cost discipline and strict incentive targets

4. Capital allocation focused on value creation
   with commitment to profitable growth

5. Full alignment of strategy with ESG criteria
   embodied by non-financial targets
Covestro set to outpace global long-term growth

Structural growth drivers

<table>
<thead>
<tr>
<th>Trends …</th>
<th>and needs …</th>
<th>lead to demand for Covestro products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change</td>
<td>Renewable energy</td>
<td>Core volume growth, long-term average</td>
</tr>
<tr>
<td></td>
<td>Lower energy buildings</td>
<td>~4%</td>
</tr>
<tr>
<td>Urbanization</td>
<td>Energy-efficient lighting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sustainable living</td>
<td></td>
</tr>
<tr>
<td>Population &amp; prosperity growth</td>
<td>Functional clothing</td>
<td>Global GDP</td>
</tr>
<tr>
<td></td>
<td>Food preservation</td>
<td>long-term average</td>
</tr>
<tr>
<td>Increasing mobility</td>
<td>Goods transport</td>
<td>2-3%</td>
</tr>
<tr>
<td></td>
<td>Conventional &amp; E-vehicles</td>
<td></td>
</tr>
</tbody>
</table>
Industries grow above global GDP

Structural growth drivers

UN SDGs(a)

<table>
<thead>
<tr>
<th>Related to Climate Change</th>
<th>Needs to be served</th>
<th>Industry demand outlook(b) 2019e – 2024e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18.4 (000kt) CAGR ~4% 2019-2024e</td>
</tr>
<tr>
<td>2, 7, 8, 9, 11, 12, 13</td>
<td>Zero emission concepts</td>
<td>~22.5</td>
</tr>
<tr>
<td>2, 7, 8, 9, 11, 12, 13</td>
<td>Low-energy buildings</td>
<td>2019-2024e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related to Increasing Mobility</th>
<th>Needs to be served</th>
<th>Industry demand outlook(b) 2019e – 2024e</th>
</tr>
</thead>
<tbody>
<tr>
<td>3, 7, 9, 11, 12, 13</td>
<td>Energy-efficient mobility</td>
<td>4.6 (000kt) CAGR ~4% 2019-2024e</td>
</tr>
<tr>
<td></td>
<td>Lightweight transportation</td>
<td>2019-2024e</td>
</tr>
<tr>
<td></td>
<td>E-mobility, autonomous driving</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related to Growing Population</th>
<th>Needs to be served</th>
<th>Industry demand outlook(b) 2019e – 2024e</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 3, 4, 5, 6, 7, 9, 11, 12, 13</td>
<td>Food preservation</td>
<td>3.5 (000kt) CAGR ~4% 2019-2024e</td>
</tr>
<tr>
<td></td>
<td>Low-cost durable goods</td>
<td>2019-2024e</td>
</tr>
<tr>
<td></td>
<td>Medical applications</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related to Increasing Urbanization</th>
<th>Needs to be served</th>
<th>Industry demand outlook(b) 2019e – 2024e</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 3, 4, 5, 6, 7, 9, 11, 12, 13</td>
<td>Affordable housing</td>
<td>18.4 (000kt) CAGR ~4% 2019-2024e</td>
</tr>
<tr>
<td></td>
<td>Living comfort</td>
<td>2019-2024e</td>
</tr>
<tr>
<td></td>
<td>Public infrastructure</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
(a) Most impacted goals out of 17 Sustainable Development Goals, set by the United Nations “2030 Agenda for Sustainable Development”
(b) Assumes global GDP CAGR 2019-2024e of 2 - 3% as per Covestro estimates; (c) Comprises MDI, TDI and polyether polyols
(d) CAS = Coatings, Adhesives, Specialties; shows PU raw materials industry demand in coatings, adhesives and sealants (excl. architectural/textile coatings and solvent-borne polyacrylates); additionally TPU, elastomers and PC/TPU films
80 years of ideas and research

Inventions at Covestro

1937 Otto Bayer invents polyurethanes

1953 Hermann Schnell invents polycarbonates

1959 Introduction of polyurethane in the fashion industry

1962 Market launch of rigid polyurethane foam for insulating refrigeration systems

1954 Kuno Wagner invents cross-linking agent for lightfast polyurethane coatings

1963 Introduction of CDs made of polycarbonate

1967 Presentation of the first car made almost entirely of plastic

1982 First office machines made of flame-retardant polycarbonate composite

1985 Polycarbonate used for the first time in automotive headlamps

1991 Introduction of polyurethane “memory” foam for mattresses

1998 First automotive glazing for the rear window of the Smart

1995 Films based on polycarbonate are introduced for security documents

2001 Construction begins at the Covestro world-scale production site in Shanghai, China

2011 Plant in Shanghai equipped with eco-friendly and efficient gas-phase phosgenation technology

2013 Epoxy resins replaced by polyurethane resins in wind turbine rotor blades

2015 First coating hardener made of renewable raw materials is introduced

2017 Key chemical aniline won from renewable raw materials for the first time

2019 Covestro Direct Store, a digital sales channel, launched

2016 Start of production of foam components with CO2 in Dormagen, Germany

2014 Introduction of INSQIN® technology for a water-based polyurethane textile coating

2012 Introduction of microcellular foam with improved insulating properties

2010 Construction begins at the Covestro world-scale production site in Shanghai, China

2001 Plant in Shanghai equipped with eco-friendly and efficient gas-phase phosgenation technology

1998 First automotive glazing for the rear window of the Smart

1995 Films based on polycarbonate are introduced for security documents

1985 First office machines made of flame-retardant polycarbonate composite

1982 Introduction of CDs made of polycarbonate

1962 Market launch of rigid polyurethane foam for insulating refrigeration systems

1959 Introduction of polyurethane in the fashion industry

1954 Kuno Wagner invents cross-linking agent for lightfast polyurethane coatings

1953 Hermann Schnell invents polycarbonates

1937 Otto Bayer invents polyurethanes
Pushing boundaries in polymer innovation
News from the Covestro labs in the past six months

Sustainable solution in Toyota concept car 'LQ'

New PC grades expand healthcare portfolio
- New medical-grade PC for drug delivery and surgical devices
- Trend to self-administration of therapeutics
- Smooth delivery with low-friction PC

Effective shoe manufacturing with 3D printing
- Fully recyclable shoes made from thermoplastic PU powder and filament
- New material enables automated production via 3D printing at lower cost

Joint development with Toyota Boshoku
- New PU composite concept with kenaf fibers
- 30 percent lighter than conventional material

Closing cycles for PU mattresses
- Joint development with Recticel of circular materials
- Focus on using raw materials from sustainable sources, such as waste, plants and CO$_2$

100% recyclable PC for 3D-printed luminaires
- Covestro PC proved suitable for Signify’s new luminaires
- Concept of circular economy combined with industrial scale production of 3D-printed luminaires

Notes:
All shown innovation news have been published on covestro.com
PU = polyurethane; PC = polycarbonate
Non-financial ambition supports growth strategy

Covestro non-financial targets 2025

1. Our R&D project portfolio is aligned with UN Sustainable Development Goals

2. 100% of suppliers compliant with our sustainability requirements

3. Reduce specific greenhouse gas emissions by 50% by 2025

4. Ten million people in underserved markets benefit from our business solutions

5. Getting the most out of carbon
## Making wind power plants more efficient

Climate change: renewable energy

<table>
<thead>
<tr>
<th>Trend</th>
<th>Need</th>
<th>Market</th>
<th>Covestro contribution</th>
</tr>
</thead>
</table>
| Climate change | More durable and economical wind power plants | Energy consumption<sup>(a)</sup>  
CAGR: ~3%  
Offshore wind energy<sup>(b)</sup>  
CAGR: ~19% | Novel components for wind power plants  
- Rotor blades: Polyurethane resins for more stability and durability  
- Towers: Polyurethane materials for anti-corrosion coatings  
- Undersea cables: Elastomers for protection systems |

### Notes:

- BP, Energy Outlook, 2017 for 2015 – 2020 based on million tons oil equivalent
Reducing high energy consumption of lighting

Urbanization: sustainable living

<table>
<thead>
<tr>
<th>Trend</th>
<th>Need</th>
<th>Market</th>
<th>Covestro innovation example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urbanization</td>
<td>Energy-efficient luminaires</td>
<td>Luminaire market(^{(a)}) CAGR: (~3%)</td>
<td>• Covestro polycarbonates proved suitable for Signify’s new luminaires</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Luminaire LED(^{(a)}) CAGR: (~12%)</td>
<td>o allowing industrial scale production of 3D-printed luminaires</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>o supporting a circular economy as a 100 percent recyclable material</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Signify – the world leader in lighting – makes energy-efficient LED lighting products and is first lighting manufacturer to produce 3D-printed luminaires on an industrial scale</td>
</tr>
</tbody>
</table>

Notes:

\(^{(a)}\) Global Luminaires, Lighting Market Analysis and Forecast 2016, PennWell for 2015 - 2022
### Replacing harmful by water-based ingredients

#### Population and prosperity growth: sustainable fashion

<table>
<thead>
<tr>
<th>Trend</th>
<th>Need</th>
<th>Market</th>
<th>Covestro innovation example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population &amp; prosperity growth</td>
<td>Sustainable and functional fashion</td>
<td>Textile industry</td>
<td>Waterborne, solvent-free materials for functionalized textiles</td>
</tr>
</tbody>
</table>

- **Textile coating market**
  - **CAGR**: ~6%

- **Covestro relevant textile coating market**
  - **CAGR**: ~11%

- **Global warming potential**
  - **~45%**

  - INSQIN® helps customers to meet their sustainability goals, e.g. through a ~45% lower carbon footprint than that of solvent-based systems
  - Chemical and mechanical resistance at same excellent levels
  - INSQIN® technology also includes a waterborne PU dispersion that is biologically degradable by microorganisms at the end of the product life cycle
  - Enabling customers to offer biodegradable coatings and composite solutions for textile coating

Notes:
- (a) IAL PUD market report 2015 for 2014 – 2019
- (b) Covestro estimates
- (c) Measured in CO₂ equivalents, comparing textile coatings made using INSQIN® technology vs solvent-based systems
Enabling efficient E-mobility and autonomous driving

Increasing mobility

<table>
<thead>
<tr>
<th>Trend</th>
<th>Need</th>
<th>Market</th>
<th>Covestro innovation example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing mobility</td>
<td>Reduced weight and new functionalities</td>
<td>Automotive</td>
<td>Polycarbonate blend drives efficient lithium-ion cell assembly</td>
</tr>
</tbody>
</table>

- Global car production\(^{(a)}\)
  - CAGR: ~3%

- Global hybrid and electrical car production\(^{(a)}\)
  - CAGR: ~34%

- Joint development with Henkel to enable large-scale, automated and cost-efficient assembly of li-ion battery modules
- Fast curing times required – made possible by system of UV-transparent polycarbonate and UV-curing adhesives
- Dimensional stability within tight tolerances during production and when exposed to heat or humidity as well as low flammability rating at thin wall thicknesses
- Solution: Cylindrical li-ion battery cell holders made of a special Bayblend\(^{®}\), efficiently assembled with Henkel’s Loctite AA 3963 battery assembly adhesives

Notes:
- (a) LMC 2019 for 2018 – 2023
Turning waste gas from steel factories into valuable plastics

\( \text{CO}_2 \) as alternative carbon source

**Industry consortium Carbon4PUR**

- Cross-sector project of 14 partners from seven countries, led by Covestro, funded by the European Union
- Objectives of this 3-year project, initiated in October 2017, among others:
  - **Reduce carbon footprint** of polyurethane intermediates by 20-60% compared to today’s polyurethane products manufactured from crude oil
  - **Save 70% of process energy** compared to conventional chemical processes
  - Provide – **first time from waste \( \text{CO}_2 \)** – higher value **novel polyols** for the production of new, sustainable polyurethane applications (rigid foam and coatings) as an example of high value polymers, matching market needs
- To date, the project defined replication criteria and preferred sites for this industrial symbiosis
- Industrial-scale testing: In future, carbon in form of mixed waste gases from the ArcelorMittal plant in Fos-sur-Mer, France, could undergo catalytic transformations in the nearby Covestro plant to become a chemical feedstock for polyols

**Pan-European project partners**

**Academic and institutional partners**

More information at [https://www.carbon4pur.eu/](https://www.carbon4pur.eu/)
**Using CO₂ to produce foam raw materials**

**Use of alternative raw materials**

<table>
<thead>
<tr>
<th>Trend</th>
<th>Need</th>
<th>Market</th>
<th>Covestro contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change</td>
<td>Substitutes for fossil feedstock</td>
<td>PU foams</td>
<td>Use industrial waste CO₂ to produce polyols</td>
</tr>
</tbody>
</table>

- CO₂ replaces up to 20% of crude oil-based feedstock of polyols
- New production plant at Dormagen site and product brand cardyon® launched
- Recticel promotes foam mattresses with more than one-seventh of oil content replaced by CO₂-based chemicals
- Sports flooring producer Polytan installed first elastic subfloor using CO₂-based cardyon® as binder
- More CO₂-based products in development for applications in sport, appliances, etc.
Leading chlorine technology reduces energy consumption

Use of energy-efficient process technology

<table>
<thead>
<tr>
<th>Trend</th>
<th>Need</th>
<th>Market</th>
<th>Covestro contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change</td>
<td>Energy-saving processes</td>
<td>Chlorine</td>
<td>NaCl electrolysis with ODC(^{(b)})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduced</td>
<td>• Energy usually accounts for about one</td>
</tr>
<tr>
<td></td>
<td></td>
<td>electricity</td>
<td>third of the production costs for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>consumption(^{(a)})</td>
<td>chlorine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>~25%</td>
<td>• Covestro and ThyssenKrupp Uhde</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chlorine Engineers developed proprietary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Use of an oxygen-depolarized cathode</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(ODC) consumes around 25% less energy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>than conventional electrolysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Significant economic and ecological</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>benefits vs conventional processes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• World-scale ODC chlorine plant planned</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in Tarragona, Spain</td>
</tr>
</tbody>
</table>

Notes:

(a) Compared to conventional processes
(b) NaCl = Sodium Chloride; ODC = Oxygen Depolarized Cathode
Gas-phase phosgenation reduces energy consumption

Use of energy-efficient process technology

<table>
<thead>
<tr>
<th>Trend</th>
<th>Need</th>
<th>Market</th>
<th>Covestro contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change</td>
<td>Energy-saving processes</td>
<td>Isocyanates</td>
<td>TDI / HDI gas-phase phosgenation</td>
</tr>
</tbody>
</table>
|                        |                                 | Reduced consumption of electricity\(^{(a)}\)  
\(\sim 60\%\) | • Proprietary process technology significantly increases plant throughput |
|                        |                                 | Reduced phosgene holdup\(^{(a)}\)  
\(\sim 40\%\) | • Reaction time for gas-phase phosgenation process is shorter than conventional process |
|                        |                                 |                              | • Reduced capex by 20% as plant size for a given capacity is smaller |
|                        |                                 |                              | • Reduced conversion cost due to lower energy demand and reduced solvent usage |

\(^{(a)}\) Compared to conventional liquid phase phosgenation
INNOVATION AND TECHNOLOGY TO LEAD THE WAY FORWARD – WHAT’S AHEAD OF US?
INDUSTRY TO TRANSFORM FROM A LINEAR TO A CIRCULAR BUSINESS MODEL
Driving sustainability in all parts of the business

Sustainability along the Covestro value chain

<table>
<thead>
<tr>
<th>Global trends</th>
<th>R&amp;D</th>
<th>Raw materials</th>
<th>Production</th>
<th>Products to markets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R&amp;D resources allocated based on benefits for:</td>
<td>More sustainable input addressing customer needs and profit improvement:</td>
<td>Cost efficiencies by energy-efficient process</td>
<td>Address customer needs for more sustainable solutions (e.g. lightweight, durable, bio-based)</td>
<td></td>
</tr>
<tr>
<td>• People</td>
<td>• C1 feedstock (e.g. CO₂)</td>
<td><strong>Specific greenhouse gas emissions</strong>(b)</td>
<td>Examples:</td>
<td></td>
</tr>
<tr>
<td>• Planet</td>
<td>• Bio-based feedstock (e.g. BDO(a))</td>
<td>(Index, t CO₂e / t)</td>
<td>• INSQIN®, artificial leather</td>
<td></td>
</tr>
<tr>
<td>• Profit</td>
<td>• Low carbon energy</td>
<td>Reduction by 46%</td>
<td>• Desmodur® Eco, coating hardener</td>
<td></td>
</tr>
</tbody>
</table>

Examples:
- INSQIN®, artificial leather
- Desmodur® Eco, coating hardener
- Baytherm® Microcell, insulation foam
- Makrolon®, e.g. LED lighting

Notes:
(a) BDO refers to 1,4-butanediol
(b) Cumulative annual % change in the specific greenhouse gas emissions per metric ton of product manufactured, compared with the base year 2005
(c) Energy efficiency: quotient of equivalent primary energy and in-spec production volume at our main production sites

<table>
<thead>
<tr>
<th>Year</th>
<th>Specific greenhouse gas emissions</th>
<th>Reduction %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>2.19</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>1.40</td>
<td>36%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Specific energy consumption</th>
<th>Reduction %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>0.60</td>
<td>36%</td>
</tr>
</tbody>
</table>
Circular economy (CE) to keep carbon in the loop

CE technology options under evaluation

Global industry challenges of a circular economy

1. Provide a solution for the end of life of any material
2. Extract target molecules from waste streams and secure continuous access to waste-based feedstock as raw material
3. Decouple growth from fossil resources and keep valuable carbon in the loop as long as possible

Covestro-related industries (PU, PC and others)

- Represent less than 10% of global plastic production, dominated by PE, PET, PP, PVC, PS
- Materials mostly not applied in single-use applications
- Offer few established collection streams
- Recycling technologies at early stage except some mechanical recycling; incineration no preferred option
- Covestro already commercializes products that contain alternative feedstock (bio-/CO₂-/waste-based)
INDUSTRY TO FULLY LEVERAGE DIGITALIZATION
Seizing opportunities in multiple dimensions
Covestro digital strategy 2025

**Digital operations**
- Developing improved and new products and processes faster, using simulation technologies and leveraging on globally consistently generated R&D data
- Developing lean and automated support processes (e.g. HR, Accounting, Controlling) to create competitive advantage

**Development of products**

**Manufacturing of products**
- Increasing product quality and manufacturing profitability through process optimization and increased reliability
- Enabling growth with a fully digital, autonomous end-to-end supply chain

**Support processes**

**Enabling IT**
- Serving as a shaper by providing the complete foundation for digitalization
- Enabling growth with a fully digital, autonomous end-to-end supply chain

**End-2-end supply chain**

**Digital business model**
- Building leading digital ventures and capturing new value streams for Covestro

**Digital products & business models**

**Customer interaction management**

**Digital customer experience**
- Turning customer insights into superior customer experience with optimal use of digital tools
Digitalization to increase operational efficiency

Covestro digital operations

New products and processes

• High performance computing for efficient research and development
• First product developed with support of computational chemistry launched in appliance application
• Shortened time to market and reduced resources for experimental work
• Computational chemistry helps to find catalysts for recycling polymers in the context of CE

Plant availability

• AI-based models applied to data streams from production equipment support continuous asset monitoring
• Reduced maintenance efforts and spend as well as optimized replacement and service intervals

Asset engineering

• iPEP (Integrated plant and engineering platform) to provide virtual image of existing plants, including all systems and processes
• Concept has been proven at Caojing and Antwerp site
• Improved quality engineering data and project management
Multiple channels to meet changing customer expectations

Covestro digital customer experience

**Field sales / KAM / Inside sales**
Protect and nurture business with large- and medium-size accounts supported by digital

**Covestro Direct Store**
Serve digital-minded customers with tailored e-commerce offers

**E-commerce platforms**
Create leads and new business in long-tail on open platform in China

**Distribution by 3rd party**
Serve long tail customers who do not directly interact with us

---

**Covestro interacts with and sells to customer directly and determines all elements of the offering**

**Offer context determined by 3rd party**

**Covestro without direct customer access**

---

- Online solution center with product search, user stories
- Order management platform with document management, track & trace
- WeChat channel

- Direct store on Asellion e-commerce platform
- Spot deals, auctions, forward deals
- 24/7 availability in a protected environment

- Authentic Covestro materials offered in flagship store on Alibaba 1688.com

- Digital offering provided by third party

Notes:
KAM = Key Account Management
PUSHING BOUNDARIES IN INNOVATION AND TECHNOLOGY IS AT THE CORE OF COVESTRO
Disclaimer

This presentation may contain forward-looking statements based on current assumptions and forecasts made by Covestro AG.

Various known and unknown risks, uncertainties and other factors could lead to material differences between the actual future results, financial situation, development or performance of the company and the estimates given here. These factors include those discussed in Covestro’s public reports, which are available on the Covestro website at www.covestro.com.

The company assumes no liability whatsoever to update these forward-looking statements or to adjust them to future events or developments.