If you do not take this copy of our presentation, we are glad to reuse it on another occasion. This presentation is available for download at https://investor.covestro.com/en/presentations

Pushing boundaries in innovation and technology

Conference presentation
WHY IS INNOVATION AND TECHNOLOGY LEADERSHIP IMPORTANT?
Inventor and leader in high-tech material solutions

Covestro at a glance

- **€14.6bn**
 - Sales
 - 2018

- **#1**
 - Global producer of PU and its derivatives as well as PC\(^{(a)}\)

- **4.1%**
 - Core volume growth
 - CAGR 2015-2018

- **16,770**
 - Employees
 - (in FTE) 2018

- **€276m**
 - R&D expenses
 - 2018

Notes:
\((a) \) Based on total combined nameplate capacity for MDI, TDI and polyether polyols at year end 2018 as per Covestro estimates

- **Polyurethanes, PUR**
 - 51%

- **Polycarbonates, PCS**
 - 28%

- **Coatings, Adhesives, Specialties, CAS**
 - 16%

- **Other**
 - 5%

- **APAC**
 - 33%

- **NAFTA**
 - 24%

- **EMLA**
 - 43%

- **Sports / Leisure, Cosmetics, Health, diverse industries**
 - 26%

- **Automotive / Transportation**
 - 20%

- **Chemicals**
 - 18%

- **Electrical / Electronics**
 - 16%

- **Wood / Furniture**
 - 12%

- **Construction**
 - 8%

- **Wood / Furniture**
 - 5%
Materials and systems for rigid and flexible foams
Polyurethanes (PUR) at a glance

#1
Producer globally and inventor of PU\(^{(a)}\)

1,000
Polyols grades for differentiation

3.8%
Core volume CAGR in 2015-2018\(^{(b)}\)

€7.4bn
Sales 2018

€1.0bn
FOCF 2018

Cold chain
e.g. refrigerator

Construction
e.g. metal panel

Cost leadership
e.g. process technology

Comfort
e.g. furniture upholstery

Automotive
e.g. instrument panel

Sustainability
e.g. CO\(_2\)-based polyether polyols

Notes:
(a) Based on total combined nameplate capacity for MDI, TDI and polyether polyols at year end 2018 as per Covestro estimates
(b) Adjusted prior-year figures to reflect the transfer of the specialty elastomers business from the Polyurethanes segment to the CAS segment as of January 1, 2018
Engineering thermoplastic with unique combination of properties

Polycarbonates (PCS) at a glance

#1
Producer globally and inventor of PC\(^{(a)}\)

1,000
PC grades for broadest offering

6.1%
Core volume CAGR in 2015-2018

€4.1bn
Sales 2018

€468m
FOCF 2018

Notes:
(a) Based on nameplate capacity at year end 2018 as per Covestro estimates

Innovation and Technology @ Covestro
Electronics
e.g. robot housing

Consumer electronics
e.g. adapter

Electrical
e.g. LED street lamp

Mobility
e.g. charging station

Healthcare
e.g. drug delivery

Mobility
e.g. exterior

Electronics
e.g. robot housing

Consumer electronics
e.g. adapter

Electrical
e.g. LED street lamp

Mobility
e.g. charging station

Healthcare
e.g. drug delivery
Performance materials for coatings, adhesives and specialties

Coatings, Adhesives, Specialties (CAS) at a glance

<table>
<thead>
<tr>
<th>#1</th>
<th>2,700+</th>
<th>3.3%</th>
<th>€2.4bn</th>
<th>€203m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Producer globally of aliphatic isocyanates and PU dispersions(^{(a)})</td>
<td>Products based primarily on 6 monomers</td>
<td>Core volume CAGR in 2015-2018(^{(b)})</td>
<td>Sales 2018</td>
<td>FOCF 2018</td>
</tr>
</tbody>
</table>

Notes:

\(^{(a)}\) Based on nameplate capacity at year end 2018 as per Covestro estimates

\(^{(b)}\) All figures adjusted to reflect the transfer of the specialty elastomers business from the Polyurethanes segment to Coatings, Adhesives, Specialties segment as of January 1, 2018 as well as termination of trading activities and reduced contract manufacturing.
Covestro set to outpace global growth

Structural growth drivers

<table>
<thead>
<tr>
<th>Trends …</th>
<th>and needs …</th>
<th>lead to demand for Covestro products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change</td>
<td>Renewable energy</td>
<td>Core volume growth CAGR 2018-2023e ~4%</td>
</tr>
<tr>
<td></td>
<td>Lower energy buildings</td>
<td></td>
</tr>
<tr>
<td>Urbanization</td>
<td>Energy-efficient lighting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sustainable living</td>
<td>Global GDP CAGR 2018-2023(a) 2-3%</td>
</tr>
<tr>
<td>Population & prosperity growth</td>
<td>Functional clothing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Food preservation</td>
<td></td>
</tr>
<tr>
<td>Increasing mobility</td>
<td>Goods transport</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conventional & E-vehicles</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
(a) Covestro estimate
Industries grow above global GDP

Structural growth drivers

UN SDGs

<table>
<thead>
<tr>
<th>Related to climate change:</th>
<th>Needs to be served</th>
<th>Industry demand outlookb 2018e – 2023e</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 7, 8, 9, 11, 13</td>
<td></td>
<td>PU(c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2018e, 2023e</td>
</tr>
<tr>
<td>2, 7, 9, 11, 13</td>
<td></td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Related to increasing mobility:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3, 7, 9, 11, 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Related to growing population:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 3, 7, 9, 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Related to increasing urbanization:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3, 9, 10, 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

(a) Most impacted goals out of 17 Sustainable Development Goals, set by the United Nations’ “2030 Agenda for Sustainable Development”

(b) Assumes global GDP CAGR 2018–2023e of 2-3% as per Covestro estimates;

(c) Comprises MDI, TDI and polyether polyols

(d) Shows PU raw materials industry demand in coatings, adhesives and sealants (excl. architectural/textile coatings and solvent-borne polyacrylates); additionally TPU, elastomers and PC/TPU films
80 years of ideas and research

Inventions at Covestro

- 1937: Otto Bayer invents polyurethanes
- 1949: Hermann Schnell invents polycarbonates
- 1953: Kuno Wagner invents cross-linking agent for lightfast polyurethane coatings
- 1954: Otto Bayer invents polyurethanes
- 1959: Otto Bayer invents polyurethanes
- 1962: Market launch of rigid polyurethane foam for insulating refrigeration systems
- 1967: Presentation of the first car made almost entirely of plastic
- 1969: Otto Bayer invents polyurethanes
- 1982: Introduction of CDs made of polycarbonate
- 1985: First office machines made of flame-retardant polycarbonate composite
- 1995: Films based on polycarbonate are introduced for security documents
- 2001: Construction begins at the Covestro world-scale production site in Shanghai, China
- 2011: Plant in Shanghai equipped with eco-friendly and efficient gas-phase phosgenation technology
- 2013: Epoxy resins replaced by polyurethane resins in wind turbine rotor blades
- 2014: Introduction of INSQIN® technology for a water-based polyurethane textile coating
- 2015: First coating hardener made of renewable raw materials is introduced
- 2016: Start of production of foam components with CO₂ in Dormagen, Germany
- 2017: Key chemical aniline won from renewable raw materials for the first time
- 2019: Covestro Direct Store, a digital sales channel, launched
Innovation and technology leadership secure profitable growth

Covestro key investment highlights

1. Above GDP volume growth
 driven by innovation and sustainability trends, also embodied by non-financial targets

2. Leading and defendable global industry positions
 as innovation and cost leader

3. More than half of sales generated by resilient businesses
 supporting value-creating base earnings

4. Management focus on driving efficiency
 with streamlined structures to better adapt to market needs, focus on cost discipline and new incentive targets

5. Use of cash focused on shareholder value
 with commitment to progressive dividend policy and focused capex for best value-creation
HOW DO WE INNOVATE AND CONTINUE TECHNOLOGY LEADERSHIP?
YOU CAN’T FIGHT GLOBAL WARMING WITH COOL CLOTHES. WHY NOT?

#SustainableSolutions
#PushingBoundaries
Non-financial ambition supports growth strategy

Covestro non-financial targets 2025

1. Our R&D project portfolio is aligned with UN Sustainable Development Goals

2. 100% of suppliers compliant with our sustainability requirements

3. Reduce specific greenhouse gas emissions by 50% by 2025

4. Ten million people in underserved markets benefit from our business solutions

5. Getting the most out of carbon
Thinking in full life cycles
Sustainability along the value chain

Global trends

R&D
R&D resources allocated based on benefits for:
• People
• Planet
• Profit

Raw materials
More sustainable input addressing customer needs and profit improvement:
Examples:
• C1 feedstock (e.g. CO₂)
• Bio-based feedstock (e.g. BDO\(^{(a)}\))
• Low carbon energy

Production
Cost efficiencies by energy-efficient process

<table>
<thead>
<tr>
<th>Specific CO₂e emissions(^{(b)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>t CO₂e / t</td>
</tr>
<tr>
<td>2005</td>
</tr>
<tr>
<td>2018</td>
</tr>
<tr>
<td>Reduction by 38%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific energy consumption(^{(c)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWh PE / t</td>
</tr>
<tr>
<td>2005</td>
</tr>
<tr>
<td>2018</td>
</tr>
<tr>
<td>Reduction by 36%</td>
</tr>
</tbody>
</table>

Products to markets
Address customer needs for more sustainable solutions (e.g. lightweight, durable, bio-based)
Examples:
• INSQIN\(^{®}\), artificial leather
• Desmodur\(^{®}\) Eco, coating hardener
• Baytherm\(^{®}\) Microcell, insulation foam
• Makrolon\(^{®}\), e.g. LED lighting

Notes:
(a) BDO refers to 1,4-butanediol
(b) Specific greenhouse gas emissions: metric tons of CO₂ equivalents per metric ton of production volume
(c) Energy efficiency: quotient of equivalent primary energy and in-spec production volume at our main production sites

14 | 2019 | Innovation and Technology @ Covestro
Notes:
Making wind power plants more efficient

Climate change: renewable energy

<table>
<thead>
<tr>
<th>Trend</th>
<th>Need</th>
<th>Market</th>
<th>Covestro contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change</td>
<td>More durable and economical wind power plants</td>
<td>Energy</td>
<td>Novel components for wind power plants</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energy consumption<sup>(a)</sup> CAGR: ~3%</td>
<td>• Rotor blades: Polyurethane resins for more stability and durability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Offshore wind energy<sup>(b)</sup> CAGR: ~19%</td>
<td>• Towers: Polyurethane materials for anti-corrosion coatings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Undersea cables: Elastomers for protection systems</td>
</tr>
</tbody>
</table>

Notes:
- ^(a) BP, Energy Outlook, 2017 for 2015 – 2020 based on million tons oil equivalent
- ^(b) Navigant, World Wind Energy Market Update, 2017, for 2016 – 2021 based on mega watt
Lowering CO₂ footprint of furniture

Urbanization: sustainable living

<table>
<thead>
<tr>
<th>Trend</th>
<th>Need</th>
<th>Market</th>
<th>Covestro contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urbanization</td>
<td>Eco-friendly produced furniture</td>
<td>Furniture</td>
<td>Bio-based hardener for water-based, industrial furniture coatings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coating industrial furniture market<sup>(a)</sup></td>
<td>• Bayhydrol® eco UV 2877 combines higher productivity with ecological advantage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAGR: ~3%</td>
<td>• Drying up to 50% faster than a high-performance standard product thanks to a multi-curing mechanism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water-based industrial furniture market<sup>(b)</sup></td>
<td>• Around 35% of the product is based on biomass, contributing to circular economy by helping to close the carbon loop</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAGR: ~5%</td>
<td>• LCA shows significant improvement in carbon footprint compared to standard waterborne UV curable dispersions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Renewable feedstock share</td>
<td>~35%</td>
</tr>
</tbody>
</table>

Notes:
- (a) CSIL January 2017 for 2017 - 2021
- (b) Covestro estimates
Replacing harmful by water-based ingredients

Population and prosperity growth: sustainable fashion

<table>
<thead>
<tr>
<th>Trend</th>
<th>Need</th>
<th>Market</th>
<th>Covestro contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population & prosperity growth</td>
<td>Sustainable and functional fashion</td>
<td>Textile industry</td>
<td>Waterborne, solvent-free materials for functionalized textiles</td>
</tr>
</tbody>
</table>

- **Textile coating market**
 - **CAGR**: ~6%

- **Covestro relevant textile coating market**
 - **CAGR**: ~11%

Global warming potential
- ~45%

- **INSQIN® helps customers to meet their sustainability goals, e.g. through a ~45% lower carbon footprint than that of solvent-based systems**
- **Chemical and mechanical resistance at same excellent levels**
- **INSQIN® technology also includes a waterborne PU dispersion that is biologically degradable by microorganisms at the end of the product life cycle**
- **Enabling customers to offer biodegradable coatings and composite solutions for textile coating**

Notes:
(a) IAL PUD market report 2015 for 2014 – 2019
(b) Covestro estimates
(c) Measured in CO₂ equivalents, comparing textile coatings made using INSQIN® technology vs solvent-based systems
Enabling efficient E-mobility and autonomous driving

Increasing mobility

<table>
<thead>
<tr>
<th>Trend</th>
<th>Need</th>
<th>Market</th>
<th>Covestro contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing mobility</td>
<td>Reduced weight and new functionalities</td>
<td>Automotive</td>
<td>Pioneering all-around material concept</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Efficient thermal management to reduce energy demand</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• New lighting functions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Integrated light and signal elements, sensors, antennas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Vehicle-to-environment communication</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Entirely new possibilities in design</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Surfaces with integrated features: Displays, touch screens for multiple styling options and brand differentiation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Most stringent weight reductions</td>
</tr>
</tbody>
</table>

Notes:
(a) LMC 2019 for 2018 – 2023

Global car production\(^{(a)}\)
CAGR: ~3%

Global hybrid and electrical car production\(^{(a)}\)
CAGR: ~34%
YOU CAN’T USE CO₂ TO ACHIEVE CLEANER PRODUCTION. WHY NOT?

#PushingBoundaries
#CleanerProduction
Leading chlorine technology reduces energy consumption

Use of energy-efficient process technology

<table>
<thead>
<tr>
<th>Trend</th>
<th>Need</th>
<th>Market</th>
<th>Covestro contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change</td>
<td>Energy-saving processes</td>
<td>Chlorine</td>
<td>NaCl electrolysis with ODC(^{(b)})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduced electricity consumption(^{(a)}) ~25%</td>
<td></td>
</tr>
</tbody>
</table>

- Energy usually accounts for about one third of the production costs for chlorine
- Covestro and ThyssenKrupp Uhde Chlorine Engineers developed proprietary technology
- Use of an oxygen-depolarized cathode (ODC) consumes around 25% less energy than conventional electrolysis
- Significant economic and ecological benefits vs conventional processes
- World-scale ODC chlorine plant planned in Tarragona, Spain

\(^{(a)}\) Compared to conventional processes
\(^{(b)}\) NaCl = Sodium Chloride; ODC = Oxygen Depolarized Cathode
Gas-phase phosgenation reduces energy consumption

Use of energy-efficient process technology

<table>
<thead>
<tr>
<th>Trend</th>
<th>Need</th>
<th>Market</th>
<th>Covestro contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change</td>
<td>Energy-saving processes</td>
<td>Isocyanates</td>
<td>TDI / HDI gas-phase phosgenation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduced consumption of electricity<sup>(a)</sup>~60%</td>
<td>• Proprietary process technology significantly increases plant throughput</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduced phosgene holdup<sup>(a)</sup>~40%</td>
<td>• Reaction time for gas-phase phosgenation process is shorter than conventional process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Reduced capex by 20% as plant size for a given capacity is smaller</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Reduced conversion cost due to lower energy demand and reduced solvent usage</td>
</tr>
</tbody>
</table>

^(a) Compared to conventional liquid phase phosgenation
Using CO₂ to produce foam raw materials

Use of alternative raw materials

<table>
<thead>
<tr>
<th>Trend</th>
<th>Need</th>
<th>Market</th>
<th>Covestro contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change</td>
<td>Substitutes for fossil feedstock</td>
<td>PU foams</td>
<td>Use industrial waste CO₂ to produce polyols</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO₂ share of weight ≤20%</td>
<td>• CO₂ replaces up to 20% of crude oil-based feedstock of polyols</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• New production plant at Dormagen site and product brand cardyon® launched</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Recticel promotes foam mattresses with more than one-seventh of oil content replaced by CO₂-based chemicals</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Sports flooring producer Polytan installed first elastic subfloor using CO₂-based cardyon® as binder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• More CO₂-based products in development for applications in sport, appliances, etc.</td>
</tr>
</tbody>
</table>
Turning waste gas from steel factories into valuable plastics

CO₂ as alternative carbon source

Industry consortium Carbon4PUR

• Cross-sector project of 14 partners from seven countries, led by Covestro, funded by the European Union

• Goal to make more use of alternative carbon sources like CO₂ in order to close the carbon loop and save direct fossil resources such as crude oil

• Dedicated research how to use flue gas from the steel industry to replace oil-based raw materials – in a particularly efficient and sustainable way

• To date, the project has shown first promising results: Test quantities of polyol intermediates have been obtained both from CO and CO₂

• Industrial-scale testing: In future, carbon in form of mixed waste gases from the ArcelorMittal plant in Fos-sur-Mer, France, could undergo catalytic transformations in the nearby Covestro plant to become a chemical feedstock for polyols

Pan-European project partners

Academic and institutional partners
YOU CAN’T
TURN 80 YEARS OF EXPERIENCE INTO A
FRESH PERSPECTIVE.
WHY NOT?

#PushingBoundaries #FreshPerspective
Enabling to seize new opportunities in multiple dimensions

Digitalization at Covestro

Digital operations

• Innovate how to do daily business cost efficiently and more safely
• Digitalize business operations
• Digital, fully integrated and data-based approach allows to work more safely and efficiently

Digital customer experience

• Innovate how to grow current business
• Digitalize the customer and supplier approach
• Reflecting needs of digital savvy customers and supporting their decision making across multiple digital touchpoints

Digital business model

• Innovate how to make business
• Develop new, digital business models
• Utilizing digital technologies to enhance customer and own benefits
Digitalization to increase operational efficiency

Dimension I – Digital operations

Predictive maintenance
- Consistent data model and workflows for fast deployment
- High degree of horizontal and vertical data integration
- Increased plant runtime, reduced maintenance costs as well as optimized replacement and service intervals

Computational chemistry
- High performance computing for efficient research and development processes
- First product developed with support of computational chemistry launched in appliance application
- Shortened time to market and reduced resources for experimental work

Digital twin
- iPEP (Integrated plant and engineering platform) to provide virtual image of existing plants, including all systems and processes
- One of 11 projects to enable more efficient planning, operation and maintenance of plants
- Pilot project planned in Caojing
Suitable touchpoints for every requirement
Dimension II – Digital customer experience

Digital customer journey

Highlights

- The online Customer Lounge combines all tools related to product search and ordering
- The online Product Finder can also be accessed via the Customer Lounge where customers can efficiently search for suitable products
- Revised global E-ordering platform "Order@Covestro" to place an order easily online
- Status of purchase order, time of delivery or invoice information can be accessed by customers at every time
Digital channel fills “24/7 direct and tailored“ business gap

Covestro commercial channels

Field sales / KAM(a)	Inside sales	Covestro Direct Store	E-Market place	Distribution
![Field sales / KAM](image1) | ![Inside sales](image2) | ![Covestro Direct Store](image3) | ![E-Market place](image4) | ![Distribution](image5)

Covestro interacts with and sells to customer directly and determines all elements of the offering

Offer context determined by 3rd party	Covestro without direct customer access

- Relationship managers with focus on business development
- Protect and nurture business relations with large accounts who require key account/ sales coverage
- Remote sales force working primary via email and phone
- Efficiently manage standard product business with smaller accounts who prefer to speak to someone
- New selling and buying features 24/7, private, protected, tailored
- Offer new e-commerce possibilities to “digital-minded” sellers and buyers, initially for standard products
- External platforms with multiple, competing suppliers, e.g. 1688.com
- Leads and new direct business in long tail with customers who like platform standards
- One-stop shop for customers with multiple services
- Long tail customers who do not interact with us directly

Notes:

(a) KAM = Key Account Management

Covestro interacts with and sells to customer directly and determines all elements of the offering

Offer context determined by 3rd party

Covestro without direct customer access
Digital sales channel expands e-commerce opportunities

Dimension III – Digital business models

Highlights

• Covestro Direct Store launched in March 2019, hosted on Asellion platform
• Customers to purchase chemical products conveniently, flexibly and securely at current market prices
• Adapted buying experience to changed customer requirements, offering new methods in addition to existing digital and analog sales channels
• Customers to receive regular personalized offers at clear real-time conditions
• Covestro to benefit from additional, personalized digital doorway to customers
Digital trading platform Asellion open to third parties
Dimension III – Digital business models

Scalable software solution for third party providers

The Covestro Direct Store powered by Asellion
Digital trading platform for chemicals complements existing sales and opens up new ways to customers.

- Buyers receive individual offers and the service that suits them best at a glance.
- Products available around the clock, anywhere and with just one click.
- Sellers can present themselves in their own brand shop and satisfy individual customer needs.
- Innovative and secure Software-as-a-Service (SaaS) solution for third party providers.

Highlights

- Covestro Direct Store as first supplier store on the Asellion platform
- Asellion platform technology designed as a scalable and secure software-as-a-service (SaaS) solution
- In future, third party providers and other manufacturers have option to host their own direct store powered by Asellion
- After ongoing test and development phase, platform to open for external providers during 2019
- Asellion is a wholly owned subsidiary of Covestro, based in Amsterdam
PUSHING BOUNDARIES IN INNOVATION AND TECHNOLOGY IS AT THE CORE OF COVESTRO
Disclaimer

This presentation may contain forward-looking statements based on current assumptions and forecasts made by Covestro AG.

Various known and unknown risks, uncertainties and other factors could lead to material differences between the actual future results, financial situation, development or performance of the company and the estimates given here. These factors include those discussed in Covestro’s public reports, which are available on the Covestro website at www.covestro.com.

The company assumes no liability whatsoever to update these forward-looking statements or to adjust them to future events or developments.